湖北省数学学会常务理事会2024年学术年会
湖北文理学院 ● 襄阳
2024年11月1日-11月3日
报告简介
报告一:Some Recent Progress in a Parabolic-Elliptic Keller-Segel System with Signal-dependent Motility
报告人:江杰 研究员 中国科学院
报告摘要:
In this talk, we would like to report our recent work on a Keller-Segel system of chemotaxis featuring signal-dependent motility. We develop systematic new methods relying mainly on various comparison techniques to study the existence and boundedness problem. The talk is based on my recent joint works with Kentaro Fujie (Tohoku University), Philippe Laurençot (CNRS and University of Savoie Mont Blanc), Yanyan Zhang (ECNU), and Yamin Xiao (IAPCM).
报告人简介:
江杰,中国科学院精密测量科学与技术创新研究院,研究员。主要研究趋化方程、相场-流体方程组等非线性发展方程整体解的适定性、有界性、渐近性、爆破解等相关问题。目前在CPDE、CVPDE、JDE、SIMA、Nonlinearity 等国际数学刊物正式发表SCI论文 31 篇,3 篇入选 ESI 高被引论文,1 篇论文同时入选 ESI 热点论文。获得2021年度中国科学院精密测量院突出科技成果奖,2023 年湖北省工业与应用数学学会优秀青年学者奖。主持国家自然科学基金面上项目、青年基金、湖北省自然科学基金面上项目等课题。
报告二:Involutions over Finite Fields
报告人:郑大彬 教授 湖北大学
报告摘要:
An involution over finite fields is a permutation polynomial whose inverse is itself. Owing to this property, involutions over finite fields have been widely used in applications such as cryptography and coding theory. As far as we know, there is no systematic way to construct involutions and are only few explicit involutions over finite fields. In this talk, we propose two methods to construct involutions and obtain lots of explicit involutions over finite fields. The first one is to construct involutions of the form $x^rh(x^\frac{q-1}{d})\in F_q[x] by solving congruence equations over finite fields. The second one is to construct involutions from 2-to-1 mappings over finite fields. Moreover, the involutions derived from 2-to-1 mappings have no fixed points.
报告人简介:
郑大彬,湖北大学数学与统计学学院教授、博士生导师、院长,中国工业与应用数学学会编码密码及相关理论专业委员会委员、中国数学会计算机数学专业委员会委员。2006年6月于中科院数学与系统科学研究院获博士学位,2009年6月至2012年4月在中科院信息安全国家重点实验室从事博士后研究工作,2015年3月至2016年2月在美国特拉华大学访问、学习。先后主持国家自然科学基金项目4项、国家重点研发计划子课题1项以及省部级项目多项。在《IEEE Transactions on Information Theory》、《Design, Codes and Cryptography》、《Finite Fields and Their Applications》、《Discrete Mathematics》、《Cryptography and Communications》、《SCIENCE CHINA Mathematics》等国内外学术期刊和国际会议上发表论文50多篇。曾获得第31届国际符号与代数计算(ISSAC2006)年会杰出论文奖。
报告三:On the size, spectral radius, distance spectral radius and fractional matchings in graphs
报告人:张敏捷 教授 湖北文理学院
报告摘要:
In this paper, we first establish a lower bound on the size (resp. the spectral radius) of a graph $G$ to guarantee that the graph $G$ contains a fractional perfect matching. Then we determine an upper bound on the distance spectral radius of graph $G$ to ensure that the graph $G$ has a fractional perfect matching. Furthermore, we construct some extremal graphs to show all the bounds obtained in this contribution are the best possible.
报告人简介:
张敏捷,湖北文理学院数学与统计学院教授,硕士生导师,美国《数学评论》评论员。研究方向:代数图论与组合数学。主持、参与多项教学与科研项目,其中主持国家自然科学青年基金1项。在Discrete Math., Discrete Appl. Math., Finite Fields Appl., Appl. Math. Comput.等期刊发表学术论文近30篇,1 篇入选 ESI 高被引论文,出版学术专著1部。