数学与统计学院

【学术报告】偏微分方程专题学术报告(四)
2022-11-08 14:40:07 来源: 浏览:

报告时间:20221111(星期五)14:30-15:30

腾讯会议号129 631 310

报告题目: On the Cauchy problem of a two component b-family equations in .

报告人: 吴兴龙 教授(武汉理工大学)

报告摘要 In this talk, we study the well-posedness, blow-up scenario , global solution and traveling wave solution of a two-component b-family equations in space , , which is open problem for p≠2. First, we establish the local well-posedness for the equations by kato's semigroup theory, where we introduce the definition of dissipative operator to prove for p≠2. Second, we improve the blow-up scenario of the strong solution for the equations derived by Liu and Yin. Third, by the conservation law and fluid equation, the global solution of this equations is derived. Finally, we prove the equations has a family of traveling wave solutions. This talk is based on a joint work with Lijun Du, who graduated from Hubei University of Arts and Science in 2019.

报告人简介:吴兴龙教授,20127月博士毕业于中山大学数学学院,随后在北京物理与计算数学研究所师从郭柏灵院士从事博士后工作,2014年博士后出站后在中国科学院武汉物理与数学研究所从事研究工作,2019年调入武汉理工大学理学院并晋升为教授,博士生导师。研究方向:1.非线性色散波方程(Camassa-Holm方程DP方程,非线性Schrodinger方程) 2.双曲守恒律 3.流体力学(可压与不可压Navier-Stokes方程以及Euler方程) 4. 等离子方程(Zakharov方程,双流体方程)2010年以来在 J. Funct. Anal.Indiana Univ. Math. J., Annali Sc. Norm. Sup. Pisa, NonlinearityJHDE, JMFM, Nonlinear Anal., Differ. and Integral equations, DCDS-A等国际SCI期刊上发表30多篇学术论文。学术论文已被国际期刊引用的总次数超过350余次(其中论文单篇最高被引次数为130余次)。应邀为J. Funct. Anal.SIAM J. Math. Anal.JDE,以及Phys. Lett. A10多个国际期刊的审稿人。目前已主持了国家自然科学基金项目4,并参与国家自然科学基金项目6项。



】【打印关闭
上一篇【学术报告】偏微分方程专题学术报告(五) 下一篇【学术报告】偏微分方程专题学术报告(三)

最新内容

热门内容